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LONG-TERM GOALS 
 
The long-term goal of this research is to construct global and mesoscale nonhydrostatic numerical 
weather prediction (NWP) models for the U.S. Navy using new numerical methods specifically 
designed for modern computer architectures. To take full advantage of distributed-memory computers, 
the global domains of these new models are partitioned into local sub-domains, or elements, that can 
then be solved independently on multiple processors.  The numerical methods used on these sub-
domains are local, high-order accurate, fully conservative, and highly efficient.  Using these ideas we 
are developing global and mesoscale nonhydrostatic atmospheric models that will improve upon the 
operational models currently used by all U.S. agencies including the U.S. Navy. 
 
OBJECTIVES 
 
The objective of this project is to construct new high-order local methods for the Navy’s next-
generation global and mesoscale nonhydrostatic NWP models.  The high-order accuracy of these 
methods will ensure that the new model yields better forecasts than the current global spherical 
harmonics model (NOGAPS) and better accuracy than the current mesoscale finite difference model 
(COAMPS).  The objective is to achieve this accuracy while increasing the geometric flexibility to use 
any grid as well as to increase the efficiency of these models on large processor-count distributed-
memory computers.  Higher efficiency means that the new models will require less computing time 
that then allows for increasing the number of ensemble members and/or increasing the resolutions of 
the NWP models. The methods that we propose to use for these models are state-of-the-art and are not 
being used by either current or newly emerging NWP and climate models. 
 
APPROACH 
 
To meet our objectives we explore: 
 
1. spectral element (SE), discontinuous Galerkin (DG), and WENO spatial discretization methods;  

2. high-order semi-implicit (SI) time-integrators with adaptive time-stepping for vastly improved 
efficiency; 
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3. high-order Lagrangian-like time-integrators that are fully conserving and scale well on modern 
computer architectures; 

4. various forms of the governing equations in order to maximize accuracy, efficiency, stability, and 
conservation properties; 

5. unified hydrostatic, nonhydrostatic, and pseudo-incompressible formulations of the equations; and 

6. fully unstructured and adaptive grids. 

 

The power of SE and DG methods is that they are high-order accurate yet are completely local in 
nature – meaning that the equations are solved independently within each individual element and 
processor. Furthermore, high-order methods have minimal dispersion error – this is an important 
property for capturing fine-scale atmospheric phenomena (e.g., tropical cyclones, Kelvin and Rossby 
waves).  The theoretical development of SE and DG methods are now well-established and these 
methods are currently the two most successful methods found in the literature for fluid flow problems, 
with WENO also being quite popular for structured grid applications. 
 
Semi-implicit (SI) and Lagrangian time-integrators offer vast improvements in efficiency due to the 
longer time steps that they permit; it should be mentioned that semi-implicit and Lagrangian-like 
methods can be classified together under the heading of implicit-explicit (IMEX) methods that has 
garnered much attention in the computational mathematics literature. Furthermore, in order to reap the 
full benefits of the high-order spatial discretization methods requires increasing the order of accuracy 
of the time-integration methods as well; this is a topic that too often has been ignored by most 
scientific computing communities, including the NWP community. Lagrangian methods have not been 
used successfully for mesoscale modeling because of their lack of conservation. Another problem that 
they pose is that they require vast amounts of inter-processor communication on a distributed-memory 
computer. We have worked on Lagrangian-like methods that are conserving and require no additional 
inter-processor communication. 
 
Before committing resources towards the development of new NWP models, it is important to identify 
the form of the governing equations that is most capable of conserving all quantities deemed 
important. We have been performing studies on this topic for the past two years – that is, to identify 
the form of the governing equations capable of representing conservation of either mass, energy, or 
both. In addition, we have analyzed various forms of the governing equations with respect to 
robustness, flexibility, and efficiency in the context of implicit-explicit (IMEX) time-integration 
methods.  Within this work we will also explore hybrid models that solve either the hydrostatic, 
nonhydrostatic, or pseudo-incompressible equations. This feature allows the models to be used for 
research purposes by Navy scientists in order to test the importance of multi-scale phenomena at 
specific resolutions.  
 
One final area that needs to be explored is the concept of adaptive grids. In the past few years, adaptive 
grids have gained considerable momentum in the atmospheric modeling community – in fact, I was 
invited to give a keynote lecture at the University of Reading in March 2009 to kick-off a year long 
program on adaptive modeling at the Newton Institute in Cambridge University, England. 
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WORK COMPLETED 
 
In this section, we describe the work completed this fiscal year. The work can be categorized into four 
sections: analysis of the best form for the nonhydrostatic equations, time-integration methods for these 
equations, spatial discretization methods, and physical parameterization.  
 
Nonhydrostatic Governing Equations. We have completed our analysis of the various forms of the 
Euler equations and their advantages/disadvantages for nonhydrostatic modeling. Specifically we 
analyzed the following equations: Set 1 is defined as follows where the solution vector is Exner  

∂π
∂t

+ u •∇π + γ −1( )π ∇ • u( )= 0;
∂u
∂t

+ u •∇u + cpθ∇π = − f k×u( )− gk;
∂θ
∂t

+ u •∇θ = 0

 
pressure, velocity, and potential temperature. Set 1 is the equation set used in the U.S. Navy’s 
mesoscale model COAMPS. The main problem with this equation set is that it cannot conserver either 

ass or energy.   

et 2 in conservation form (denoted as Set 2C) is defined as follows where the solution vector is  

orm used in WRF. This form is 
ery attractive because it conserves mass although it does not conserve energy. It does, however, 

his set is of interest because it can also be written in non-conservation form while still conserving 
mass. We shall refer to it as Set 2NC (for non-conserving). and it is defined as follows: 
 

f 
t) of each 

f the components of mass, momentum, and potential temperature can be recast as a Lagrangian 
derivative. This then allows the use of Lagrangian-like time-integrators. Set 3 is defined as: 
 

inviscid or viscous (with the proper viscous stressed included) (see Ref. [3]). One question we had 

m
 
S

 
density, momentum, and density potential temperature. Set 2 is the f
v
conserve density potential temperature which is related to entropy.  
 
T

 
The interest in equation Set 2NC is that it conserves mass and offers much flexibility in the type o
time-integrators that can be used with it. For example, note that the first two terms (in red fon
o

 
where the solution vector is density, momentum, and density total energy, where E=ρe with e=cvT 
+0.5u•u + φ, in other words e represents internal, kinetic, and potential energy. This equation set is not 
used in atmospheric modeling but is the equation of choice in computational fluid dynamics (CFD). 
This set is very attractive because it conserves both mass and energy regardless of whether the flow is 

∂ρ
∂t

+ ∇•U = 0;
∂U
∂t

+ ∇•
U⊗U
ρ

+ PI
⎛ ⎞

= − f k×U( )− ρgk;
∂Θ

+ ∇•
ΘU

2⎝⎜ ⎠⎟ ∂t ρ
⎛ ⎞

= 0; P = P
RΘ

⎝⎜ ⎠⎟ A PA

⎛ ⎞
γ

∂
∂

⎝⎜ ⎠⎟

ρ
t
+ ∇•U = 0;

∂t
∂U

+ ∇ •
ρ

U⊗U
+ PI2⎝⎜ ⎠⎟

= − f k×U( )− ρgk;
∂t

⎛ ⎞ ∂E
+ ∇•

ρ
E + P

U
⎝⎜ ⎠⎟

= 0; P = γ −1( ) E −
2ρ

⎛ ⎞ U •U
−

⎝⎜
ρφ

⎛ ⎞
⎠⎟

∂ρ
∂t

+ u •∇ρ + ρ∇• u = 0;
∂u
∂t

+ u •∇u +
ρ
1
∇P = − f k×u − gk;

∂t
( ) ∂θ

+ u •∇θ = 0; P = PA PA

ρRθ⎛ ⎞
γ

⎝⎜ ⎠⎟
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about this set, however, is whether it could be coupled to existing physical parameterization packages 
that rely on potential temperature and not energy; this question has been answered in the past year with 

e recent results of the Japanese NICAM model which in fact uses this equation set.  

The final equation set studied is Set 4 that is written as follows: 

n 

d 4 

s. 
e LM model of the German Weather Service and has some good 

roperties that we are analyzing. 

ent 

 

 
: 

on measures.  We shall next use this equation set to build a 3D 
lobal/local nonhydrostatic model. 

 

es 

w that if 
e Schur form is used, then the semi-implicit models are always faster than explicit models. 

al 

st 

ion will be quite formidable for 
ckling nonhydrostatic problems (such as tracking hurricanes, etc.). 

th
 

∂ρ
∂t

+ u •∇ρ + ρ∇• u = 0;
∂u
∂t

+ u •∇u +
1
ρ
∇P = − f k×u( )− gk;

∂P
∂t

+ u •∇P + γ P∇• u = 0

 
Note that this equation is also amenable to various time-integration methods including Lagrangia
methods since the first two terms of each of the components of the equations can be written as a 
Lagrangian derivative. Furthermore, as in Sets 2C and 2NC, Set 4 can formally conserve mass but not 
energy. Set 4 is a very good compromise between conservation and efficiency. Note that Sets 1 an
are the only fully closed systems requiring no equation of state, whereas Sets 2C, 2NC, and 3 all 
require an equation of state in order to couple the extra variable (pressure) to the prognostic variable
Set 4 is the equation set used by th
p
 
Using these 5 equation sets we developed x-z slice mesoscale models to: compare the spectral elem
and discontinuous Galerkin methods, analyze semi-implicit time-integrators, and to see how these 
models behaved under a series of test cases including sharp front simulations and nonhydrostatic flow
over mountains.  This work resulted in a peer-reviewed article that appeared this year (see Ref. [3]) 
and another that has been submitted (see Ref. [6]). The summary of those papers is that set 2NC is the
form that we should use in order to construct the optimal nonhydrostatic model, taking into account
accuracy, efficiency, and conservati
g
 
Time-Integrators.  Directly connected with our choice of equation sets is the resulting semi-implicit 
operators. The specific equation set chosen contributes to the overall efficiency of the model (e.g., set
1 and 4 are inherently faster than the other sets since they do not require an equation of state) but the 
semi-implicit formulations also have a strong effect on the efficiency of the models. We found that sets 
1 and 4 are indeed the fastest codes but the fact that they do not conserver either mass or energy mak
them unattractive. On the other hand, set 2NC was the third fastest code while conserving mass and 
energy very well.  In studies performed this year, we compared semi-implicit time-integrators both in 
their Schur (i.e., pseudo-Helmholtz) and No Schur (i.e., full system) forms and compared them to the 
types of explicit time-integrators currently being used in split-explicit models. Our results sho
th
 
Spatial Discretization Methods.  We have been arguing in the course of this three year project that the 
best next-generation models will be those based on element-based Galerkin (EBG) such as the spectr
element and discontinuous Galerkin methods. However, we have only partly showed the benefits of 
this approach such as: high parallel efficiency and high-order accuracy. We have also hinted in the pa
that another attribute of these methods is that they allow one to use unstructured and adaptive grids. 
We have teamed up with the University of Mainz (Mainz Germany) and the University of Hamburg 
(Hamburg Germany) to combine the triangle-based discontinuous Galerkin method with adaptivity. 
Although only preliminary, the results show that indeed this combinat
ta
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We are always looking in the literature for new and promising methods to use for our models. The 
weighted essentially non-oscillatory (WENO) method has received much attention in computational 
fluid dynamics and so we have begun exploring it for the construction of nonhydrostatic atmospher
models. So far, we have implemented the method on a two-dimensional tracer problem, and a two-
dimensional Euler code but without gravity. The addition of gravity severely complicates the solution 
strategy for th

ic 

is method but we hope to show results for a full nonhydrostatic WENO model in the next 
w months. 

rch 

 

th 

s work has been summarized in a journal article soon to be submitted 
n October 2009, see Ref. [8]). 

ESULTS 

licit approach) with semi-implicit time-integrators 
ased on backward difference formulas (BDF2).  

 

fe
 
Physical Parameterization. In collaboration with Sasa Gabersek and Jim Doyle of the Naval Resea
Laboratory in Monterey, CA, we have included simple microphysics to the semi-implicit spectral 
element Euler codes. We have combined the expertise of NPS on dynamical cores and numerical 
methods with the expertise of NRL-Monterey on physical parameterizations and have implemented a
simple microphysics known as Kessler physics. The idea is to include three tracer equations into the 
governing equations. These three tracers represent: water vapor, condensation, and precipitation. To 
include the microphysics requires modifying the equation of state such that density now includes bo
dry and moist air, and the potential temperature becomes virtual potential temperature. Our results 
show that the model is perfectly stable for very long time-integrations and that the results produced by 
the model are quite physical. Thi
(i
 
R
 
Time-Integration Methods. We explored various time-integration strategies in order to increase the 
efficiency of the nonhydrostatic models. In Ref. [6] we analyze explicit time-integration strategies 
(using 3rd Runge-Kutta methods as in the split-exp
b

 
  a)                                                                           b)   
Figure 1: Performance study of the explicit (RK35) and semi-implicit (Schur and No Schur) models 

for the warm bubble test for various Courant numbers  a) wallclock time and b) number of  
GMRES iterations. 
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In Figure 1 we show that while the explicit RK3 method requires prohibitively small Courant numbers 
(time-step size), the semi-implicit methods in either their Schur or No Schur form can use Courant 
numbers far greater than one (up to 30). Figure 1a (left panel) shows the wallclock time of the explicit 
(RK35), semi-implicit with Schur complement (Schur), and semi-implicit for the full system (No 
Schur). The semi-implicit methods outperform the explicit methods. Figure 1b (right panel) shows the 
average number of GMRES iterations per time-step; GMRES is the iterative solver used to solve the 
linear system. Clearly, the advantage of the Schur form extends beyond just solving a smaller problem 
– the Schur form is far better conditioned thereby requiring fewer iterations. 
 
The results of this study are sufficiently encouraging to convince us to extend the models to three-
dimensions. However, one other possibility that we are exploring involves solving the equations fully-
implicitly. This means that the equations have to be solved using a Newton outer iteration and a 
GMRES inner iteration. We are developing a prototype using this idea and will report our findings in 
the near future. For now, we can show that the fully-implicit codes are still not as efficient as our semi-
implicit codes as is clearly illustrated in Figure 2 where the number of GMRES iterations as a function 
of time (time step refers to the increasing time level) are plotted for the Jacobian-free Newton-Krylov 
(fully-implicit) and No Schur semi-implicit methods. The advantage of the fully-implicit method, 
however, is that it can use as large a time-step as desired without fear of numerical instabilities. We are 
presenting these results at the AGU meeting in San Francisco. 
 

 
 

Figure 2: Performance study of the fully-implicit and semi-implicit (No Schur) models  
for the warm bubble test. 

 
Spatial Discretization Methods. In all of our previous work we have discretized the equations in space 
using element-based Galerkin methods that have been touted as being geometrically flexible meaning 
that unstructured adaptive grids can be used. All of our models, in fact, have used unstructured grid 
machinery (e.g., NSEAM) but these grids are comprised of quadrilateral elements. Quadrilateral 
elements can only be used to construct efficient adaptive models in a non-conforming approach 
(meaning that the grid will have “hanging” nodes). We are only beginning to study this approach but 
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have much experience in conforming adaptive methods based on triangles. In collaboration with the 
University of Mainz and the University of Hamburg, we are coupling the triangle-based discontinuous 
Galerkin (DG) methods developed at NPS with the adaptive mesh refinement developed at Hamburg.  
Figure 3 shows the product of this collaboration where simulations of warm bubbles, inertia gravity 
waves, and density current simulations have been conducted using triangle-based DG methods with 
grid adaptivity. Clearly, only small overshoots can be seen even though this problem represents a 
discontinuity in potential temperature. The reason why the model remains stable is due to the ability of 
the adaptive grid to capture the regions of steep gradients. 
 

 
 

Figure 3: Potential Temperature contours for a warm bubble test after 720 s for the semi-implicit 
DG model with a Courant number of 50 and adaptive triangular grids. 

 
Although these results are extremely encouraging, we continue to search for better methods or perhaps 
ways of combining DG with other methods. A good example is the weighted essentially non-
oscillatory (WENO) method. This method is a high-order finite difference method constructed 
specifically for resolving discontinuities. We envision using WENO either as a stand-alone Euler 
solver, only for the tracers, or as a way to handle the overshoots and undershoots in both spectral 
element and discontinuous Galerkin methods. 
 
 

 
  a)                                                  b)                                            c) 

 
Figure 4: Solution after one revolution for the 2D advection equation for a) SE, b) DG, and c) 

WENO. Note, however, that WENO is run with a limiter while SE and DG are not. 
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We have begun our study of WENO by first comparing it to the spectral element (SE) and 
discontinuous Galerkin (DG) methods for the two-dimensional advection equation (i.e., a tracer 
equation). Figure 4 shows the solution after one revolution of a cylindrical initial condition. Figure 4a) 
shows the solution for the SE method, Fig. 4b) for the DG method and Fig. 4c) for the WENO method; 
keep in mind that neither the SE nor the DG methods use a limiter to handle oscillations whereas the 
WENO method does. We only show this result to motivate the need for including WENO in our 
studies. We anticipate using WENO as a possible limiter for our SE and DG models in order to remove 
oscillations from the solutions. 
 
We are also considering WENO as a possible candidate for a next-generation model but a few hurdles 
have to be overcome. We currently have constructed an Euler model using WENO but only without 
gravity. The next challenge that remains is to include gravity but currently no such formulation exists 
and it is not so straightforward to extend WENO to non-homogeneous equations. 
 
Physical Parameterization. In order to better test our nonhydrostatic models, it is important not only to 
run challenging dry physics tests but also those including moist physics. The simplest moist physics 
test that can be implemented is the Kessler physics problem. With this microphysics, three additional 
tracer equations are added to the Euler equations. These three equations represent water vapor, 
condensation (i.e., clouds), and precipitation (i.e., rain). In collaboration with scientists in the 
mesoscale modeling group of the Naval Research Laboratory, we have coupled the Euler solver with 
the Kessler microphysics. Figure 5 shows a snapshot after 1800 seconds for the water vapor (color 
map), condensation (grey lines), and precipitation (white). This snapshot shows that the model remains 
stable (for all time) and produces realistic squall lines (series of thunderstorms generated in sequence). 
In fact, to gain a full appreciation of the high-quality of these results requires looking at an animation 
which can be found on the website listed above.  
 
The group at NRL has conducted a detailed analysis of these results; more on this can be found in the 
ONR report by Dr. Jim Doyle. The results of this study have been collected and will be submitted 
shortly to a peer-reviewed journal (see Ref. [8]).  
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Figure 5: Concentrations of water vapor (Qv), condensation (Qc), and rain (Qr) for a Squall Line 

experiment using simple microphysics with the Semi-implicit Spectral Element Nonhydrostatic 
Model. The results are shown after 1800 seconds showing the generation of condensation (grey 

lines) and precipitation (white patches inside grey lines). 
 
 
IMPACT/APPLICATIONS 
 
NOGAPS and COAMPS are run operationally by FNMOC and is the heart of the Navy’s operational 
support to nearly all DOD users worldwide.  This work targets the next-generation of these systems for 
massively parallel computer architectures. NSEAM and its mesoscale cousins have been designed 
specifically for these types of computer architectures while offering more flexibility, robustness, and 
accuracy than the current operational systems. Additionally, the new models are expected to conserve 
all quantities such as mass and energy and use state-of-the-art time-integration methods that will 
greatly improve the capabilities of the Navy’s forecast systems.  
 
TRANSITIONS 
 
Improved algorithms for model processes will be transitioned to 6.4 as they are ready, and will 
ultimately be transitioned to FNMOC.  
 
RELATED PROJECTS 
   
Some of the technology developed for this project could be used to improve NOGAPS in other NRL 
projects. The work performed in this work unit on coupling NSEAM with NOGAPS physics has 
already revealed some sensitivities of the physical parameterization to the vertical coordinate; this 
information can now be used to improve the forecasts of NOGAPS. In addition, the work on the 
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mesoscale models will help improve COAMPS. An example is the time-integration methods that we 
are exploring for the new models may well be incorporated into the current operational version of 
COAMPS. The insight gained on grids in the current project could also be leveraged to develop a 
global version of COAMPS by virtue of the cubed-sphere grid (hexahedral) and data structures 
developed for the NSEAM model. 
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